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We propose a simple method to compute the velocity difference statistics in forced Burgers turbulence in
any dimension. Within a reasonable assumption concerning the nucleation and coalescence of shocks, we
suggest, in particular, that the ‘‘left’’ tail of the distribution may decay as an inverse square power, which is
compatible with numerical data. Our results are compared to those of various recent approaches: instantons,
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I. INTRODUCTION

The Burgers equation, which describes the potential flow
of a fluid without pressure, provides a wonderful laboratory
for testing new ideas and techniques in view of the study of
fully developed turbulence in the Navier-Stokes equation.
These are two cases of nonlinear stochastic equations which
share the same structure of nonlinearity. The important dif-
ference comes from the nature of the large scale structures.
In the case of the Burgers equation these are shock waves
and the corresponding physical picture of the flow is rather
simple. This simplicity has already allowed for a very de-
tailed study of the decaying turbulence@1,2#.

The forced case, in which the fluid is stirred randomly and
steadily on large length scales, is more complicated. How-
ever, it has been attacked recently by various methods, such
as the operator product expansion@3#, direct probabilistic
methods@4,5#, instanton calculus@6#, and the replica method
@7#. The latter method allowed us to get a detailed solution in
infinite dimension, and the finite dimensional solution seems
to be within reach. This would be an important milestone for
several reasons. It gives an example of a flow with strong
intermittency, created by large scale structures. It provides a
benchmark to test new or older ideas on fully developed
turbulence. Furthermore, this problem is also related to inter-
esting problems in condensed matter physics, like the elastic
lines in random media~e.g., vortices in superconductors! and
growth problems@8#. In this respect it is interesting to notice
that the Burgers equation~with time playing the role of the
running length scale! also appears naturally in the renormal-
ization group study of manifolds in random media@9#.
Therefore, the phenomenology of the Burgers equation
might be directly relevant to experimental studies of pinned
Bloch walls @11# ~or other elastic manifolds!, besides its
more direct potential applications to turbulence in one di-
mensional fluid flows@10# or to pattern formation in astro-
physics@12#.

In this paper we shall focus on a simple aspect of forced

Burgers turbulence: the tails of the velocity gradient distri-
bution in the regions where there are no shocks. We evaluate
the ‘‘right’’ tail through a rather simple computation, and
compare it to the more sophisticated approaches developed
recently@7,3,6#. We then give a conjecture on the ‘‘left’’ tail
which is based on a plausible argument, requiring the system
to reach a stationary state. We shall first discuss the one
dimensional case, then turn to higher dimensions, and com-
pare our results with the previously available ones.

II. SLOPE DYNAMICS IN ONE DIMENSION

In one dimension we consider a velocity fieldv(x,t) gov-
erned by the Burgers equation

]v
]t

1v
]v
]x

5n
]2v
]x2

1 f ~x,t !, ~2.1!

where f (x,t) is a random force, which is supposed to have
Gaussian distribution, with zero mean, and a second moment

^ f ~x,t ! f ~x8,t8!&5ed~ t2t8!RS ~x2x8!2

D2 D , ~2.2!

whereR is any smooth function decaying to zero fast enough
at large arguments~e.g., an exponential as in@7#!, D is the
length scale of the stirring force, ande is the injected energy
density. To keep consistency with the notations of our pre-
vious work@7#, we fix the normalizations by requiring that at
short distanceR(y)512(3/2)y1O(y2).

Our approach is based on the following observation: even
in the forced case, the flow is organized in some smooth
regions separated by shocks. Inside the smooth regions, the
flow locally depends linearly on the position

v~x,t !.l~ t !@x2x0~ t !#. ~2.3!

A linear expansion of the original equation allows us to de-
rive the evolution ofx0(t) ~which is irrelevant for our
present discussion! and of the local slopel(t). This slope
follows a Langevin equation

dl

dt
52l2~ t !1h~ t ! ~2.4!
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with a noise termh, due to the random stirring force, which
has a Gaussian distribution, with

^h~ t !h~ t8!&5
3e

D2 d~ t2t8!. ~2.5!

This Langevin equation describes the relaxation of a particle
at temperatureT53e/2D2 in a potentialV~l!5l3/3. The zero
temperature case corresponds to the decaying Burgers turbu-
lence, where the slope decays in time asl(t)
5l0/(11l0t), leading to an asymptotic behavior in which
the slope is 1/t independently of the initial conditions@1#.
The forced caseTÞ0 leads to runaway solutions: starting
from a positive slopel0, it will be eventually driven by the
forcing to an infinitely negative slopel→2`. This effect is
nothing but the building up of a new shock, which tends to
develop as soon as the fluctuations due to the forcing drive
the system to a negative slope. However, the tail of the slope
distribution at positivel is unaffected by this effect@see
below, Eq.~2.9!#: it depends on rare noise configurations
which, for a Gaussian forcing, lead to a Boltzmann form

P~l!;Ce2V~l!/T5C expS 2
2D2l3

9e D , ~l→1`!

~2.6!

whereC is a constant. A similar result was obtained in the
context of pinned charge density waves in@13#.

Inside the linear regions, the velocity difference between
two points at distancer , u5v(x1r )2v(x), equals the slope
l times the distancer , so that the slope fluctuations induce
the following tail for the probability distribution function
~PDF! of the velocity difference

P~u!.
C

r
expS 2

2u3D2

9er 3 D , ~u→1`! ~2.7!

which is precisely the result derived in@3,6#. We shall dis-
cuss the relationship of this elementary derivation with these
other more elaborate ones later on.

From the evolution of the slope~2.4! one can also discuss,
in a more speculative way, the other tail of the PDF of the
velocity differences~at large negativeu!. Since the regime
we want to study is stationary, the average number of shocks
~or of linear regions! must be conserved. Hence, the slopes
which ‘‘disappear’’ atl52` creating a new shock and thus
two new slopes must be compensated by the spontaneous
disappearance of some other slopes through shock coales-
cence. In other words, for the number of ‘‘cells’’~locally
linear regions! to be conserved, one must introduce a source
term J0S~l! in the corresponding Fokker-Planck equation,
which describes these ‘‘reinjection’’-coalescence processes.
These processes@and, hence, the correct form ofS~l!# are
difficult to describe properly, but fortunately the asymptotic
results are rather insensitive to the detailed shape ofS~l!.
We normalize the integral overl of S~l! to 1, and write the
Fokker-Planck equation for the Langevin process~2.4! in the
presence of the source term as

]P

]t
5T

]2P

]l2 1
]

]l
~Pl2!1J0S~l!. ~2.8!

This equation now possesses a stationary solution with a
nonvanishing currentJ0, which is nothing but the probability
per unit time for a new shock to appear. This stationary
solution is given by

P~l!5J0expS 2
l3

3TD E
2`

l

dl8F~l8!expS 1
l83

3T D ,
~2.9!

whereF(l)5* l
`dl8S(l8) andJ0 is fixed by the normaliza-

tion of P~l!. If we make the reasonable assumption that the
reinjection termS~l! is a rapidly decaying function, the in-
tegral appearing in the above form~2.9! of the slope prob-
ability converges forl→1`, leading back to the above re-
sult, Eq. ~2.6!. For l→2`, F~l!→1, and the asymptotic
form of P~l! is easily shown to be

P~l!;
J0
l2 , ~l→2`!. ~2.10!

Note that this result is conditioned to the inflexion points
x0(t) such thatu9(x)50. TheunconditionedPDF requires a
better understanding of the statistics of these shocks in for-
mation ~see@4#!. More precisely, if the width of the ‘‘pre-
shocks’’ is l ~which we suppose to be sufficiently large for
the viscosity to be negligible! and the corresponding velocity
jump isU, two extreme cases are possible. If the local slope
l and l are uncorrelated, one gets again al22 tail for the
unconditioned PDF. This in turn leads to a velocity differ-
ence distribution which decays asP(u);J0r /u

2 for
ua→2`, which happens to be precisely the form that
Chekhlov and Yakhot have proposed using very different
arguments, and which is compatible with numerical data
@14#. However, ifU rather thanl is uncorrelated withl, the
tails of the PDF’s become, respectively,ulu23 and uuu23, as
argued in@4#.

Let us emphasize that the Fokker-Planck equation without
the source termS~l! does not have a~normalizable! equilib-
rium state. This normalizable stationary state can only appear
in the presence of a nonzero current for large negativel. The
absence of an equilibrium state is also at the heart of the
operator product expansion approach of Polyakov@3#, to
which we shall come back below.

III. SLOPE DYNAMICS IN HIGHER DIMENSION

The generalization of this approach to theN-dimensional
Burgers equation is interesting. The velocity field verifies the
equation

]vW
]t

1~vW •¹W !vW 5n¹2vW 1 fW~xW ,t !, ~3.1!

wherevW is a gradient flow and the forcing termfW is a random
gradient field, with a Gaussian distribution of mean zero and
second moment given by

f j~xW ,t ! f k~xW8,t8!5ed~ t2t8!Fd jk2
~xW2xW8! j~xW2xW8!k

ND2 G
3GF ~xW2xW8!2

2ND2 G , ~3.2!
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where theN dependence is chosen such as to ensure the
existence of a well defined largeN limit @7#. As before, the
correlationG decreases fast enough at large arguments and
behaves asG(y).12(y/2)1O(y2) at small arguments.

Between the shocks~which now have a dimensionN21!,
the flow is locally radial, with a slope matrixM

v j~xW ,t !5(
k
M jk~ t !@xk2xk

0~ t !#. ~3.3!

The slope matrix evolves in time as

dMjk

dt
52~M2! jk~ t !1yjk~ t !, ~3.4!

whereyjk is a Gaussian random noise with a zero mean and
a variance given by

^yi j ~ t !ykl~ t8!&5
e

ND2 ~d i jdkl1d ikd j l1d i ld jk!d~ t2t8!.

~3.5!

We shall need to study the statistics of the eigenvaluesli of
the slope matrixM . From second order perturbation theory,
one finds that these eigenvalues verify a Langevin type equa-
tion

]l i

]t
52l i

21
e

ND2 (
j ~Þ i !

1

l i2l j
1h i , ~3.6!

where the level repulsion term has appeared@15#, and the
noise is Gaussian with a correlation

^h i~ t !h j~ t8!&5
e

ND2 ~112d i j !d~ t2t8!. ~3.7!

Compared to the one dimensional case, the situation is more
complicated because of two effects: level repulsion on one
hand, and correlation of the noiseshi acting on each eigen-
value on the other hand. This noise correlation prevents the
existence of an equilibrium~currentless! Boltzmann distribu-
tion, which one could use as above to obtain the right tail of
the slope distribution. We shall instead use an instanton com-
putation, which is well suited to deal with such correlations
~see, e.g.,@16#!.

We want to compute the PDFP(u) of the longitudinal
velocity difference,

u5(
i

@v i~xW1rW !2v i~xW !#
r i
urWu

, ~3.8!

which is given between the shocks by

u5r(
i j

rŴ iM i j rŴ j , ~3.9!

wherer5urWu and rŴ is a unit vector in the direction ofrW. In
terms of the eigenvalues ofM , it takes the form

u5r(
i51

N

l iai
2 , ~3.10!

whereaW is a random unit vector~obtained fromrŴ through a
random rotation!.

Let us introduce the Laplace transform of the PDF of the
longitudinal velocity difference

G~m,r !5E du P~u!emu5E
2 i`

i` dz

2p i E da1•••daN

3K expFmr(
j
aj
2l j1zS (

j
aj
221D G L .

~3.11!

In the spirit of recent works in turbulence@17,18,6# and in
other fields@16,19#, we shall use a path integral representa-
tion for the probability distribution of the eigenvalues, and
evaluate the largem tail of G(m,r ) by finding the leading
instanton trajectory. The path integral is written through
standard manipulations@20#. The dynamics is started at a
time t0→2`, and the eigenvalues are measured att50. We
introduce conjugate fieldsl̂i~t! to implement the Langevin
equation, and get after average over the thermal noise

G~m,r !5E
2 i`

i` dz

2p i E )
j
dajE )

j
d@l j #d@ l̂j #exp~2S!

~3.12!

with an action

2S5E
2`

0

dt(
j

l̂j~ t !

3S dl j

dt
1l j

2~ t !2
e

ND2 (
k~Þ j !

1

l j~ t !2lk~ t !
D

1E
2`

0

dt
e

2ND2 S 2(
j

l̂j~ t !
21(

j ,k
l̂j~ t !l̂k~ t ! D

1mr(
j
aj
2l j~ t50!1zS (

j
aj
221D . ~3.13!

The stationarity conditions of this action are easily written.
The effect of the parameterm on the trajectorieslj (t),
l̂j (t) is just to impose the boundary condition

l̂j (t502)52mra j
2. The actionS has the following scaling

property: under the changem→g2m, t→gt, l i→gl i ,
l̂i→g2l̂i and z→g3z, all the terms scale asg3, except the
level repulsion term, which is left invariant. Therefore, in the
largem limit, it is legitimate to neglect this level repulsion
effect, and the following instanton solves these simplified
equations:

a25•••5aN5l̂25•••5l̂N50,

l1~ t !5
f

12ft
l̂1~ t !52

mr

~12ft !2
, ~3.14!

where the parameterf is f5A3emr /(2ND2). The action of
this instanton is
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2 ln@G~m,r !#.S52S 2e

3ND2D 1/2~mr !3/2. ~3.15!

Assuming that this instanton gives the leading contribution
to the Laplace transformG at largem, one deduces from
~3.15! the following tail of the PDF of velocity differences at
largeu:

P~u!;C expS 2
2ND2

9e

u3

r 3 D ~u→1`!. ~3.16!

In order to check the dominance of the instanton solution
~3.14!, we have performed two checks: an evaluation of the
contribution of other instantons, and a numerical simulation
of the Langevin equation. Without level repulsion, other so-
lutions can be found, with (N2p)aj andl̂j identically zero,
and thep remainingl and l̂ all equal. The action of these
instantons is a factorf p5A(p12)/3p smaller than~3.15!.
Since f p,1 for all p.1, these other solutions can all be
neglected. Taking into account the level repulsion can only
increase further the action of these other solutions, so they
should not contribute.

A direct numerical test of the result~3.16! is easily done.
We have simulated the Langevin evolution equation for the
eigenvalues~3.6! in the caseN52. We adopted a simple Ito
discretization of time and computed the histogram of
u/r5l Icos

2~c!1l2sin
2~c! wherec is a random angle with

uniform distribution in@0,2p#. The time step has been kept
adaptive in order to be able to use a small time step when-
ever the two eigenvalues are close to each other. Our simu-
lation has been done ate /D2510/9 and the statistics is over
106 points. The result of the histogram is given in Fig. 1,
where the straight line gives the slope predicted from our
instanton computation~3.16!. The agreement confirms that
the instanton~3.14! indeed gives the leading contribution.
We have also simulated the Langevin process without the
level repulsion term, and checked that we find the same tail
for lnP(u). Let us just mention that the finiteu effects turn
out to be larger in this latter case, and the analytic prediction

for the tail is found only in the regime where lnP(u),210.
This finite u correction should also be important for the
analysis of velocity difference tails in numerical simulations
of the Burgers equation.

Altogether, we are confident that the right tail of the ve-
locity difference is given by~3.16! also in the multidimen-
sional case. It is important to notice that this tail gets thinner
and thinner asN grows, and finally disappears in the limit
N→`, which was actually the situation that we considered in
our previous paper@7# using the replica method. Indeed, the
calculation that we performed there shows that, forN5`,
P(u) is strictly zero whenu.uD(r /D) @whereuD5~eD!1/3 is
the velocity at scaleD#. This is compatible with Eq.~3.16!
for N5`. It however clearly emphasizes the limitations of a
largeN approach: although many features of the velocity
field are correctly predicted, such a method is unable to pre-
dict the tails of the velocity distribution. Stated differently,
the limits of large velocity difference and large dimension do
not commute.

IV. COMPARISON WITH THE DIRECT INSTANTON
APPROACH

The previous results~2.6! and ~3.16! on the tail of the
longitudinal velocity difference at large positiveu are iden-
tical to those obtained in@3,6# in one dimension and in@6# in
dimensionsN.1. The one dimensional result is thus con-
firmed by a very simple and direct derivation. In higher di-
mensions, we are unfortunately not able to solve fully for the
probability distribution of theN eigenvalues because of the
noise correlations. We have rather found a simple instanton
solution, which allows us to generalize the one dimensional
result to arbitrary dimension. A naive generalization of Eq.
~2.8! to higher dimensions also suggests that the left tail of
the distribution of velocity difference should decay asu22 in
any finite dimension.

Although our instanton computation looks much easier
than the one developed by Gurarie and Migdal@6# @we are
dealing with the probability distribution ofN eigenvaluesli
instead of anNcomponent velocity fieldvW i(x)#, the two
methods are actually very similar. In one dimension for in-
stance, the instanton for the velocity field found in@6# cor-
responds precisely to a velocity field growing linearly with
distance, with a slope calleds in @6#. It is easy to deduce
from Eqs.~19! and ~20! of @6# an evolution equation fors
which is identical to the one which is derived from the sta-
tionarity of ~3.13!. The same is true in larger dimensions.

To conclude our comparison with the work of@6#, we
have found that the positiveu tail of P(u) derived from their
nice instanton solution is certainly correct at least in one
dimension. Our computation also indicates that this instanton
cannot directly give the tail at negativeu. In fact its struc-
ture, with a linear velocity field, shows that this instanton
takes into account basically the linear regions, and not the
shocks. As we argued before, these linear regions dominate
the right tail of P(u), but the left tail is given by a com-
pletely different process. In order to understand this left tail
quantitatively, one needs to control both the formation of
shocks, and the statistics of the sizes of the jumps in velocity
at the shocks~or equivalently the statistics of the lengths of
the linear regions!. This has been achieved in the decaying

FIG. 1. The logarithm of the probability distribution function of
velocity differences, lnP(u), vs ~u/r !3, in dimensionN52, for
e /D2510/9. The curve is obtained from the simulation of the
Langevin equation on the slope matrix eigenvalues, and the straight
line indicates the prediction from the instanton computation~3.16!.
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problem @1#, or in the forced case in large dimensions@7#,
and it is hard to think that this information is contained in a
simple linear instanton configuration.

V. COMPARISON WITH THE OPERATOR PRODUCT
EXPANSION

Let us now discuss the operator product expansion~OPE!
approach of Polyakov@3#, which is supposed to give thefull
PDF P(u) in the scaling region. Using some conjecture on
the structure of the fusion rules in the OPE, one finds that, in
one dimension, thisP(u) is exactly the totally assymmetric
Lévy stable distribution of index32, given by the inverse
Laplace transform of the functionG(m,r ) found in ~3.15!.
The behavior of the right tail ofP(u) is again given by Eq.
~2.6!, and is thus compatible with the other approaches.
However, one should emphasize that this tail does not con-
stitute a test for the fusion rules of the OPE. In the simple
case of the ‘‘two point’’ functionP(u), the OPE approach
relies on the following steps. Restricting here to the case
N51,
one first introduces a generating functionalZ(s1 ,s2 ,t)
[^exp[s1v(x1 ,t)1s2v(x2 ,t)] &. In the stationary regime,
one should have (]Z/]t)50, which, using the tricks of Ref.
@3#, can also be written as

]2Z

]s1]x1
1

]2Z

]s2]s2
2

]Z

s1]x1
2

]Z

s2]x2

5^@s1f ~x1 ,t !1s2f ~x2 ,t !#

3exp@s1v~x1 ,t !1s2v~x2 ,t !#&1A, ~5.1!

whereA is a term coming from the viscosity contribution,
which is singular in then→0 limit ~the ‘‘anomaly’’!. Using
the fact that the forcef is Gaussian, the first term on the right
hand side can be reexpressed as

Ze

2
@R~0!~s1

21s2
2!12R~x12x2!s1s2#. ~5.2!

Now, changing variables to

x15x1
r

2
, x25x2

r

2
, m5

s12s2
2

, m85
s11s2
2

~5.3!

and using translational invariance, one finds, form850, the
following final equation for

G~m,r !5 K expmFvS r2D2vS 2
r

2D G L :
S ]

]m
2
2

m D ]

]r
G5

3m2e

2D2 r 2G1A, ~5.4!

wherer!D is assumed. The simplest fusion rule leads to a
contribution scaling as

A.aG1
b

m

]G

]r
, ~5.5!

wherea andb are two constants to be determined. It turns
out that the right hand tail of the solutionG(m,r ) of ~5.4!
has a leading behavior lnG.A2e/(3D2)(mr )3/2 which is in-
dependent both ofa and b. Therefore the exp~2cu3! tail
comes out exactly as what we derived in~2.7! ~with precisely
the samec!, independently of the fusion rule. This is actually
expected since we argued that this tail comes from the linear
regions where one can completely neglect the anomaly.
Without the anomaly, the above equation has no solution
which can be interpreted as the Laplace transform of a prob-
ability distribution ~cf. the discussion at the end of Sec. II!.
The fusion rules thus become crucial when one looks at the
negativeu tail. If one insists that the solutionG(m,r ) of
~5.4! is the Laplace transform of a~normalizable! probability
law, with an anomaly given by~5.5! with a50 for all m, one
finds thatP is a Lévy distribution of index 3/2, with a left tail
decaying asP(u);uuu25/2 @3#. This result disagrees with our
above calculation, which suggested auuu22 tail from the ex-
istence of a finite outgoing current at large~negative! slopes,
related to the formation of new shocks. We do not have
enough control of this ‘‘reinjection process’’ of the slopes to
make any strong statement. However, our argument is sug-
gestive enough to try to look at other fusion rules which
indeed lead to such a tail@21#.

VI. CONCLUSION

We have discussed the tails of the velocity difference dis-
tribution in Burgers’ forced turbulence. We have shown how
a direct method gives results which are in agreement with
other methods in the right tail of the distribution. This
method, however, suggests that the left tail is governed by
the dynamics of shock formation, and requires some control
over the shocks nucleation-coalescence processes. A simple
hypothesis describing these processes in terms of an effective
source term in the corresponding Fokker-Planck equation
gives auuu22 tail for the left side of the distribution, at vari-
ance with the simplest OPE conjecture, but apparently in
agreement with numerical simulations.

It would be very interesting to extend these methods to
describe more complicated quantities, such as the statistics of
the velocity potentialh defined asnW 52¹W h. In particular,
the statistics of the ‘‘barriers heights’’ separating the differ-
ent valleys ofh ~corresponding to the cells of the Burgers
flow! would be of direct interest to understand in detail the
long time dynamics of randomly pinned objects„conversely,
as originally noticed by Feigel’man@13#, the very large
‘‘slope’’ tail l→` @Eq. ~2.6!# of the Burgers flow is related
to the high frequency response of these pinned objects…. In
particular, it would be important to see to what extent the
largeN result, which states that these barriers are exponen-
tially distributed, has to be modified for finiteN. Another
interesting perspective is the generalization of these ap-
proaches to the case of a forcing correlated on long dis-
tances, where Kolmogorov’s scaling is observed between the
shocks@22,23#.
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