PHYSICAL REVIEW E VOLUME 54, NUMBER 5 NOVEMBER 1996

Velocity fluctuations in forced Burgers turbulence
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We propose a simple method to compute the velocity difference statistics in forced Burgers turbulence in
any dimension. Within a reasonable assumption concerning the nucleation and coalescence of shocks, we
suggest, in particular, that the “left” tail of the distribution may decay as an inverse square power, which is
compatible with numerical data. Our results are compared to those of various recent approaches: instantons,
operator product expansion, and replid&1063-651X96)11411-3

PACS numbefs): 05.20.Dd, 47.27%i

I. INTRODUCTION Burgers turbulence: the tails of the velocity gradient distri-
bution in the regions where there are no shocks. We evaluate
The Burgers equation, which describes the potential flowthe “right” tail through a rather simple computation, and
of a fluid without pressure, provides a wonderful laboratorycompare it to the more sophisticated approaches developed
for testing new ideas and techniques in view of the study ofecently[7,3,6. We then give a conjecture on the “left” tail
fully developed turbulence in the Navier-Stokes equationWhich is based on a plausible argument, requiring the system
These are two cases of nonlinear stochastic equations whidl reach a stationary state. We shall first discuss the one
share the same structure of nonlinearity. The important difdimensional case, then turn to higher dimensions, and com-
ference comes from the nature of the large scale structureBare our results with the previously available ones.
In the case of the Burgers equation these are shock waves

and the corresponding physical picture of the flow is rather Il. SLOPE DYNAMICS IN ONE DIMENSION
simple. This simplicity has already allowed for a very de- ) . i o
tailed study of the decaying turbulenf®2]. In one dimension we consider a velocity fielfx,t) gov-

The forced case, in which the fluid is stirred randomly anderned by the Burgers equation
steadily on large length scales, is more complicated. How- 2
ever, it has been attacked recently by various methods, such ‘9_”_,_,) ‘7_02 v Jv +f(x,t) 2.0
as the operator product expansif8i, direct probabilistic at ax X2 Y '
methodd4,5], instanton calculug6], and the replica method
[7]. The latter method allowed us to get a detailed solution invheref(x,t) is a random force, which is supposed to have
infinite dimension, and the finite dimensional solution seemg>aussian distribution, with zero mean, and a second moment
to be within reach. This would be an important milestone for
several reasons. It gives an example of a flow with strong
intermittency, created by large scale structures. It provides a
benchmark to test new or older ideas on fully developed
turbulence. Furthermore, this problem is also related to interwhereR is any smooth function decaying to zero fast enough
esting problems in condensed matter physics, like the elastiat large argumentée.g., an exponential as {IT]), A is the
lines in random mediée.g., vortices in superconductpend  length scale of the stirring force, ards the injected energy
growth problemg8]. In this respect it is interesting to notice density. To keep consistency with the notations of our pre-
that the Burgers equatiofwith time playing the role of the vious work[7], we fix the normalizations by requiring that at
running length scalealso appears naturally in the renormal- short distancér(y)=1—(3/2)y+ o(y?).
ization group study of manifolds in random medi€]. Our approach is based on the following observation: even
Therefore, the phenomenology of the Burgers equatioin the forced case, the flow is organized in some smooth
might be directly relevant to experimental studies of pinnedegions separated by shocks. Inside the smooth regions, the
Bloch walls [11] (or other elastic manifolds besides its flow locally depends linearly on the position
more direct potential applications to turbulence in one di-
mensional fluid flowg10] or to pattern formation in astro- v(X, 1) =N(t)[X=Xo(t)]. 2.3
physics[12].

In this paper we shall focus on a simple aspect of forced® linear expansion of the original equation allows us to de-
rive the evolution ofxy(t) (which is irrelevant for our
present discussigrand of the local slope(t). This slope
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with a noise termy, due to the random stirring force, which This equation now possesses a stationary solution with a
has a Gaussian distribution, with nonvanishing current,, which is nothing but the probability
per unit time for a new shock to appear. This stationary

() (') = ; S(t—t'). 25 solution is given by

)\3 \ 13
This Langevin equation describes the relaxation of a particle P()\)—Joexp{ 3T) f,md)\ FQA )ex;{ * 3T)’
at temperaturd =3¢/2A? in a potentiaV(\)=\%3. The zero (2.9
temperature case corresponds to the decaying Burgers turbu- . o )
lence, where the slope decays in time as(t) v.vhereF()\)zfAdA’S(A’) andJ, is fixed by the nqrmallza-
=Xo/(1+\ot), leading to an asymptotic behavior in which tlo_n_of I_D()\). If we make the _reasonabl_e assumption tha_t the
the slope is 1/ independently of the initial conditiongl]. ~ reinjection termS(n) is a rapidly decaying function, the in-
The forced casd #0 leads to runaway solutions: starting tegral appearing in the above for(@.9) of the slope prob-
from a positive slopé.y, it will be eventually driven by the  ability converges fon— +, leading back to the above re-
forcing to an infinitely negative slope——. This effectis ~ Sult, EQ.(2.6). For A——=, F(\)—1, and the asymptotic
nothing but the building up of a new shock, which tends toform of P(\) is easily shown to be
develop as soon as the fluctuations due to the forcing drive 3
the system to a negative slope. However, the tail of the slope P(\)~ _g, (A— —0). (2.10
distribution at positive\ is unaffected by this effecfsee A
below, Eq.(2.9)]: it depends on rare noise configurations

which, for a Gaussian forcing, lead to a Boltzmann form Note that this result is conditioned to the inflexion points

Xo(t) such that”(x) =0. TheunconditionedPDF requires a
better understanding of the statistics of these shocks in for-
), (A= +) mation (see[4]). More precisely, if the width of the “pre-
shocks” is| (which we suppose to be sufficiently large for
(2.6 the viscosity to be negligibjeand the corresponding velocity
whereC is a constant. A similar result was obtained in thejurnp isU, two extreme cases are possiple._lf th'e local slope
context of pinned charge density waves 18], N and| are uncorrelate_d, one gets again & tail fQI’ th_e
Inside the linear regions, the velocity difference betweenuncond't.'on.eOI .PDF' Th's in tun leads to a veIOC|2ty differ-
two points at distance, u=u (x+r)—(x), equals the slope ence distribution which decays a®(u)~Jgr/uc for

\ times the distance, so that the slope fluctuations induce gi:kﬁ;’v V;:g:hYgl?ﬁfteﬂzvéo E)Oe Opsr:glsueSI% th\?erfo:ijfetP:r:t
the following tail for the probability distribution function brop 9 y

I arguments, and which is compatible with numerical data
(PDF) of the velocity difference [14]. However, ifU rather than is uncorrelated with\, the
C [{ 2u3A2

2A%\3
9¢

P(\)~Ce VMNT=C exp( —

tails of the PDF’s become, respectively| 3 and|u| 3, as
P(u)=—exp — 9erT ) (U— +2) (2.7  argued in[4].
r er Let us emphasize that the Fokker-Planck equation without
L . . ) the source tern$(\) does not have énormalizablé equilib-
which hIS pr;ec!selyhfthe frer?.ult ;:ierlved [B’g]' We_shall_ ?]'S;] rium state. This normalizable stationary state can only appear
gltjr?jrtmeo:g 2::&‘;;&00;6'; |§t2rrn§rr:tary erivation with these, yhe presence of a nonzero current for large negativéhe

X absence of an equilibrium state is also at the heart of the

From the evolution of the slop@.4) one can also discuss :
. ) i ' _operator product expansion approach of Polyak8y to
in a more speculative way, the other tail of the PDF of thew%ich WeF;haII comepback beIoF\)/e. yakey

velocity differenceqat large negativer). Since the regime
we want to study is stationary, the average number of shocks
(or of linear regions must be conserved. Hence, the slopes
which “disappear” at\=— creating a new shock and thus  The generalization of this approach to tNedimensional
two new slopes must be compensated by the spontaneoBurgers equation is interesting. The velocity field verifies the
disappearance of some other slopes through shock coalesquation
cence. In other words, for the number of “cellgTocally

linear regiongto be conserved, one must introduce a source duv - I
term J,S(\) in the corresponding Fokker-Planck equation, E+(U'V)v:"v2”+f(x’t)’ 3.1
which describes these ‘“reinjection”-coalescence processes.

These processdand, hence, the correct form &N\)] are  whereg is a gradient flow and the forcing terfris a random

difficult to describe properly, but fortunately the asymptotic gradient field, with a Gaussian distribution of mean zero and
results are rather insensitive to the detailed shap8&(®f.  second moment given by

We normalize the integral over of S(\) to 1, and write the

Ill. SLOPE DYNAMICS IN HIGHER DIMENSION

Fokker-Planck equation for the Langevin procéad) in the S TE YT IRTRY ] i (X—=X")I(X—X")k
presence of the source term as RO, U)=ed(t—t")) 67— NAZ
R L (Pr2)+ 3o 2.8 o LX) 3.2
- Tz T gn (PA)+JoS(M). (2.9 SNAZ | (3.2
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where theN dependen_ce is chos_en_ such as to ensure tr\‘/?/here:?\ is a random unit vectofobtained frorrT: through a
existence of a well defined lardé limit [7]. As before, the random rotation

correlationG decreases fast enough at large arguments and' Let us introduce the Laplace transform of the PDF of the

behaves a&(y)=1— (y/2)+O(y?) at small arguments. - e
Between the shockisvhich now have a dimensiod—1), longitudinal velocity difference

the flow is locally radial, with a slope matrix

G(,u,r)zf du P(u)e““:ﬁ fdal -day
0j(%,0)= 2 Mj(O[xXR()]. (3.3 |
. o ><<exp{,ur2 a’\j+z| af—l”>.
The slope matrix evolves in time as i i
M , (3.1)
g1~ (M9 +yj(b), (3.9

In the spirit of recent works in turbulend&7,18,§ and in
ther fields[16,19, we shall use a path integral representa-
on for the probability distribution of the eigenvalues, and
evaluate the large: tail of G(u,r) by finding the leading
instanton trajectory. The path integral is written through
(Yij(Dy(t))y= Naz (80t iy + 8 Gy At —t'). standard manipulationf20]. The dynamics is started at a
time t,——o°, and the eigenvalues are measuret=ed. We
(3.9 introduce conjugate fields;(t) to implement the Langevin

We shall need to study the statistics of the eigenvahyesf equation, and get after average over the thermal noise
the slope matriXxM. From second order perturbation theory,

whereyjk is a Gaussian random noise with a zero mean an rg
a variance given by

ggre]: finds that these eigenvalues verify a Langevin type equaG(“’r):f:, - JH da,f H d[A, ]d[k]exp( S)
N (3.12
N A NA2 g‘l) Ni—A; T 38 with an action
where the level repulsion term has appeargfl], and the 0 -
noise is Gaussian with a correlation —S= f_mdt; Aj(t)
(mi(t) mi(t"))= NAZ (1+28;)6(t—t"). (3.7 X dd’\t +\? (t) NZz kgj) )\j(t)i)\k(t))

Compared to the one dimensional case, the situation is more 0 € R A
complicated because of two effects: level repulsion on one +f dt 5N A2 (22 (D22 M(t)hk(t))
hand, and correlation of the noisgsacting on each eigen- - ! 1k
value on the other hand. This noise correlation prevents the

existence of an equilibriurtcurrentlessBoltzmann distribu- +,ur2 ajzk,-(t:O)ﬂLZ
tion, which one could use as above to obtain the right tail of J

the slope distribution. We shall instead use an instanton com-
putation, which is well suited to deal with such correlanonsThe stationarity conditions of this action are easily written.

(3.13

> a-1
]

(see, e.9.[16)). The effect of the parameter on the trajectories\(t),
We want to compute the PDP(u) of the longitudinal  Aj(t) is just to impose the boundary condition
velocity difference, N j(t=0" )——,ura The actionS has the following scaling
QropertAy under the change.—y’u, t—yt, \j— 7Y\,
U= [vi(R+F)—vi(%)] |r_|| (3.9 \i— ¥?\; andz— 7%z, all the terms scale ag®, except the
I

level repulsion term, which is left invariant. Therefore, in the
large o limit, it is legitimate to neglect this level repulsion

which is given between the shocks by effect, and the following instanton solves these simplified
equations:
u=r rM r , 3.9 A ~
iz ijf (3.9 a,=:-=ay=Ny=:--=Ay=0,
wherer =|r]| andf is a unit vector in the direction df. In ¢ ur
terms of the eigenvalues &, it takes the form M(D)= 1— ¢>t )‘1( )= (l—d)t) ! (3.14

N
U= FE a2 (3.10 where the parametes is ¢=\3eur/(2NA?). The action of
= ' this instanton is
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N=2 for the tail is found only in the regime whereFiu) <—10.

' This finite u correction should also be important for the
analysis of velocity difference tails in numerical simulations
of the Burgers equation.

Altogether, we are confident that the right tail of the ve-
locity difference is given by3.16 also in the multidimen-
sional case. It is important to notice that this tail gets thinner
and thinner adN grows, and finally disappears in the limit
N—o, which was actually the situation that we considered in
our previous pap€r7] using the replica method. Indeed, the
ey ] calculation that we performed there shows that, Xoe,
P(u) is strictly zero whemu>u,(r/A) [whereu,=(eA)3is
the velocity at scalé\]. This is compatible with Eq(3.16

1000 50 100 150 for N=c, It however clearly emphasizes the limitations of a

(wi® large N approach: although many features of the velocity
_ S _ field are correctly predicted, such a method is unable to pre-
FIG. 1. The logarithm of the probability distribution function of it the tails of the velocity distribution. Stated differently,

. . 3 . . . _ oy . . . .
Velozc'ty differences, IR(u), vs (u/r)%, in dimensionN=2, for  h jimits of large velocity difference and large dimension do
€/A“=10/9. The curve is obtained from the simulation of the not commute

Langevin equation on the slope matrix eigenvalues, and the straight
line indicates the prediction from the instanton computat®a6).

20

-4.0 -

6.0 -

In P(u)

IV. COMPARISON WITH THE DIRECT INSTANTON

APPROACH

2¢ 1/2
—ln[G(M,r)]:S=—<—2) (ur)®2 (319
3NA The previous result$2.6) and (3.16 on the tail of the

) L . . .. longitudinal velocity difference at large positiveare iden-
Assuming that this instanton gives the leading contributionj.4| to those obtained if8,6] in one dimension and i8] in
to the Laplace transforn® at large s, one deduces from  gimensionsN>1. The one dimensional result is thus con-
(3.19 the following tail of the PDF of velocity differences at §jymeqd by a very simple and direct derivation. In higher di-
large u: mensions, we are unfortunately not able to solve fully for the
» 3 probability distribution of theN eigenvalues because of the
4 2NA"u ) noise correlations. We have rather found a simple instanton
P(u)~C exp — —| (u—+wx). (3.1 X . : . :
9¢ r solution, which allows us to generalize the one dimensional
result to arbitrary dimension. A naive generalization of Eq.
In order to check the dominance of the instanton solution2.8) to higher dimensions also suggests that the left tail of
(3.14, we have performed two checks: an evaluation of thethe distribution of velocity difference should decayla€ in
contribution of other instantons, and a numerical simulatiorany finite dimension.
of the Langevin equation. Without level repulsion, other so-  Although our instanton computation looks much easier
lutions can be found, withlY —p)a; and)\; identically zero, than the one developed by Gurarie and Migl [we are
and thep remaining\ and\ all equal. The action of these dealing with the probability distribution dfl eigenvalues\;
instantons is a factof ,= \(p+2)/3p smaller than(3.15.  instead of anNcomponent velocity fieldv;(x)], the two
Since f,<1 for all p>1, these other solutions can all be methods are actually very similar. In one dimension for in-
neglected. Taking into account the level repulsion can onlystance, the instanton for the velocity field found[6] cor-
increase further the action of these other solutions, so thegesponds precisely to a velocity field growing linearly with
should not contribute. distance, with a slope called in [6]. It is easy to deduce
A direct numerical test of the resuls.16 is easily done. from Egs.(19) and (20) of [6] an evolution equation foo
We have simulated the Langevin evolution equation for thewhich is identical to the one which is derived from the sta-
eigenvalueg3.6) in the caseN=2. We adopted a simple Ito tionarity of (3.13. The same is true in larger dimensions.
discretization of time and computed the histogram of To conclude our comparison with the work (8], we
u/r =\, coS(yh)+\,sirf(y) where ¢ is a random angle with have found that the positivetail of P(u) derived from their
uniform distribution in[0,277]. The time step has been kept nice instanton solution is certainly correct at least in one
adaptive in order to be able to use a small time step whendimension. Our computation also indicates that this instanton
ever the two eigenvalues are close to each other. Our sim@annot directly give the tail at negative In fact its struc-
lation has been done at/A?=10/9 and the statistics is over ture, with a linear velocity field, shows that this instanton
10° points. The result of the histogram is given in Fig. 1, takes into account basically the linear regions, and not the
where the straight line gives the slope predicted from oushocks. As we argued before, these linear regions dominate
instanton computatiof3.16. The agreement confirms that the right tail of P(u), but the left tail is given by a com-
the instanton(3.14) indeed gives the leading contribution. pletely different process. In order to understand this left tail
We have also simulated the Langevin process without thguantitatively, one needs to control both the formation of
level repulsion term, and checked that we find the same ta#hocks, and the statistics of the sizes of the jumps in velocity
for InP(u). Let us just mention that the finite effects turn  at the shockgor equivalently the statistics of the lengths of
out to be larger in this latter case, and the analytic predictiorthe linear regions This has been achieved in the decaying
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problem[1], or in the forced case in large dimensidmng, where« and 8 are two constants to be determined. It turns
and it is hard to think that this information is contained in aout that the right hand tail of the solutidB(,r) of (5.4

simple linear instanton configuration. has a leading behavior G=2¢e/(3A?)(ur)%? which is in-

dependent both ofr and 3. Therefore the exp-cu®) tail

V. COMPARISON WITH THE OPERATOR PRODUCT comes out exactly as what we derived #7) (with precisely
EXPANSION the sames), independently of the fusion rule. This is actually

) expected since we argued that this tail comes from the linear

Let us now discuss the operator product expané@PB  regions where one can completely neglect the anomaly.
approach of Polyakol], which is supposed to give tifell  \yithout the anomaly, the above equation has no solution
PDF P(u) in the scaling region. Using some conjecture onyhjch can be interpreted as the Laplace transform of a prob-
the structure of the fusion rules in the OPE, one finds that, inyility distribution (cf. the discussion at the end of Seg. Il
one dimension, thi®(u) is exactly the totally assymmetric The fusion rules thus become crucial when one looks at the
Levy stable distribution of indesx, given by the inverse negativeu tail. If one insists that the solutios(u,r) of
Laplace transform of the functio®(x,r) found in (3.19. (5.4 is the Laplace transform of @ormalizablé probability
The behaw_or of the right t§I| oP(q) is again given by Eq. law, with an anomaly given bg5.5) with =0 for all u, one
(2.6), and is thus compatible with the other approachesfings thatP is a Levy distribution of index 3/2, with a left tail
However, one should emphasize that this tail does not COMecaying a$ (u) ~|u| ~*2[3]. This result disagrees with our
stitute a test for the fusion rules of the OPE. In the simplegpoye calculation, which suggesteduh? tail from the ex-
case of the “two point” functionP(u), the OPE approach jsience of a finite outgoing current at largeegative slopes,
relies on the following steps. Restricting here to the casgg|ated to the formation of new shocks. We do not have
N=1, . _ enough control of this “reinjection process” of the slopes to
one first introduces a generating functionz(s,,s;,t)  make any strong statement. However, our argument is sug-

=(explsyv(X1,) +S0(x2,1)]). In the stationary regime, gestive enough to try to look at other fusion rules which
one should havedZ/t) =0, which, using the tricks of Ref. jhdeed lead to such a tdi21].

[3], can also be written as

9%z 9z Z Z VI. CONCLUSION

+ — —

951Xy 95205y  $10%y S20Xp We have discussed the tails of the velocity difference dis-

=([s1f (X1, 1) +Spf (X0, 1)] tribl_Jtion in Burgers_’ forced turbule_nce. We_ have shown hoyv

a direct method gives results which are in agreement with

X exf sqv(Xq,t) +Sv(X,1)])+ A, (5.9 other methods in the right tail of the distribution. This

method, however, suggests that the left tail is governed by

where A is a term coming from the viscosity contribution, the dynamics of shock formation, and requires some control
which is singular in the~—0 limit (the “anomaly”). Using  over the shocks nucleation-coalescence processes. A simple
the fact that the forcé is Gaussian, the first term on the right hypothesis describing these processes in terms of an effective

hand side can be reexpressed as source term in the corresponding Fokker-Planck equation
. gives alu| 2 tail for the left side of the distribution, at vari-
E . . . .
Z TR(0)(S2+ 52) + 2R(X: — X-)S: - 1. 5.2 ance with the simplest OPE conjecture, but apparently in
7 [ROs+5)) (X1 X2)815, ®-2 agreement with numerical simulations.

) _ It would be very interesting to extend these methods to
Now, changing variables to describe more complicated quantities, such as the statistics of
the velocity potentiah defined asv=—Vh. In particular,
=, u= P the statistics of the “barriers heights” separating the differ-
2’ 2 2 ent valleys ofh (corresponding to the cells of the Burgers
(5.9  flow) would be of direct interest to understand in detail the
long time dynamics of randomly pinned objeét®nversely,
as originally noticed by Feigel'maffil3], the very large
“slope” tail A—x [Eq. (2.6)] of the Burgers flow is related
to the high frequency response of these pinned objelrits
(r) ( r”> particular, it would be important to see to what extent the
v -0 .

r r S1—S, . S1tS;

X=X+ =, Xo=X—
1 2 2

and using translational invariance, one finds, f6=0, the
following final equation for

5 large N result, which states that these barriers are exponen-

G(,u,r)=<eXIOM

2 2
tially distributed, has to be modified for finitd. Another
9 2\ 9 3p2e interesting perspective is the generalization of these ap-
(a—— —) ar G= 5AZ r’G+A4, (5.4  proaches to the case of a forcing correlated on long dis-
1"

tances, where Kolmogorov's scaling is observed between the

wherer <A is assumed. The simplest fusion rule leads to aShOCkS[ZZ’Zg'

contribution scaling as
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